Molecular weaponry: diverse effectors delivered by the Type VI secretion system

نویسندگان

  • Juliana Alcoforado Diniz
  • Yi‐Chia Liu
  • Sarah J. Coulthurst
چکیده

The Type VI secretion system is a widespread bacterial nanomachine, used to deliver toxins directly into eukaryotic or prokaryotic target cells. These secreted toxins, or effectors, act on diverse cellular targets, and their action provides the attacking bacterial cell with a significant fitness advantage, either against rival bacteria or eukaryotic host organisms. In this review, we discuss the delivery of diverse effectors by the Type VI secretion system, the modes of action of the so-called 'anti-bacterial' and 'anti-eukaryotic' effectors, the mechanism of self-resistance against anti-bacterial effectors and the evolutionary implications of horizontal transfer of Type VI secretion system-associated toxins. Whilst it is likely that many more effectors remain to be identified, it is already clear that toxins delivered by this secretion system represent efficient weapons against both bacteria and eukaryotes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein

UNLABELLED The type VI secretion system (T6SS) is widespread in Gram-negative bacteria and can deliver toxic effector proteins into eukaryotic cells or competitor bacteria. Antibacterial T6SSs are increasingly recognized as key mediators of interbacterial competition and may contribute to the outcome of many polymicrobial infections. Multiple antibacterial effectors can be delivered by these sy...

متن کامل

Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae.

Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Transloca...

متن کامل

Marker for type VI secretion system effectors.

Bacteria use diverse mechanisms to kill, manipulate, and compete with other cells. The recently discovered type VI secretion system (T6SS) is widespread in bacterial pathogens and used to deliver virulence effector proteins into target cells. Using comparative proteomics, we identified two previously unidentified T6SS effectors that contained a conserved motif. Bioinformatic analyses revealed t...

متن کامل

Structure of the type VI secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane targeting.

A diverse superfamily of phospholipases consisting of the type VI lipase effectors Tle1-Tle5 secreted by the bacterial type VI secretion system (T6SS) have recently been identified as antibacterial effectors that hydrolyze membrane phospholipids. These effectors show no significant homology to known lipases, and their mechanism of membrane targeting and hydrolysis of phospholipids remains unkno...

متن کامل

Systematic Identification of Intracellular-Translocated Candidate Effectors in Edwardsiella piscicida

Many bacterial pathogens inject effectors directly into host cells to target a variety of host cellular processes and promote bacterial dissemination and survival. Identifying the bacterial effectors and elucidating their functions are central to understanding the molecular pathogenesis of these pathogens. Edwardsiella piscicida is a pathogen with a wide host range, and very few of its effector...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015